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In this paper, we investigate to what extent the far-wake ‘signature’ of the near-wake 
vortex dynamics of a nominally two-dimensional bluff body is affected by the character 
of the free-stream noise. We confirm the existence of an oblique wave resonance (at 
frequency, f, -fT),  which is caused by nonlinear ‘ quadratic ’ interactions between 
primary oblique shedding waves (fK) and secondary two-dimensional waves ( f T ) ,  
which are amplified from free-stream disturbances. In this work, oblique wave 
resonance is induced by acoustic forcing of two-dimensional waves. The use of acoustic 
forcing reveals a set of higher-order oblique wave resonances corresponding to 
frequencies df, - nfT), where n is an integer. We find from visualization that, even when 
the secondary two-dimensional waves have the same frequency as the oblique waves, 
it is the oblique waves that are preferentially amplified. Oblique wave angles up to 74” 
have been observed. The response of the wake to a large range of forcing frequencies 
shows a broad region of peak response, centred around F = (fT/fF) = 0.55, and is in 
reasonable agreement with predictions from linear stability analysis. A similar broad 
response is found for each of the higher-order oblique wave modes. Simple equations 
for the oblique waves yield approximate conditions for maximum wake response, with 
a frequency for peak response given by F,,, = 1/2n = 1/2, 1/4, 1/6,. . . , and an 
oblique wave angle given by Om,, = 20,, where 8, is the angle of oblique vortex 
shedding. An increase in forcing amplitude has the effect of bringing the nonlinear 
wave interactions, leading to oblique wave resonance, further upstream. Paradoxically, 
the effect of an increase in amplitude (A)  of the two-dimensional wave forcing is to 
further amplify the oblique waves in preference to the two-dimensional waves and, 
under some conditions, to inhibit the appearance of prominent two-dimensional waves 
where they would otherwise appear. With a variation in forcing amplitude, the 
amplitude of oblique wave response is found to be closely proportional to A;. In 
summary, this investigation confirms the surprising result that it is only through the 
existence of noise in the free stream that the far wake is ‘connected’ to the near wake. 

1. Introduction 
One of the basic questions concerning the far wake of a nominally two-dimensional 

body, and one that has been raised often recently, is to what extent the far-wake 
vortical structure is ‘connected’ to the near-wake vortex structure, or to what extent 
the far wake is a ‘signature’ of the body that creates it. In a previous paper (Williamson 
& Prasad 1993a, hereinafter denoted WP), it was found that one such signature in the 
far wake takes the form of an ‘oblique wave resonance’, which is triggered by the 
extreme sensitivity of the flow to free-stream disturbances - it is surprisingly the noise 
that actually forges the ‘connection ’ between near and far wakes, leaving a signature of 
the body’s wake far downstream. Our intent with the present paper is therefore to 
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investigate how the character of the free stream influences far-wake nonlinear 
resonances, and in this particular work we shall be concerned with the far-wake 
response to single-frequency acoustic forcing of the free stream. Three-dimensional 
resonances will be induced (paradoxically) through the use of two-dimensional forcing. 
In the far wake, a quadratic nonlinear interaction between the forced two-dimensional 
secondary waves and ‘shed’ oblique waves (from the body upstream) is found to 
trigger the resonance of a third ‘oblique resonance wave’, confirming the resonance 
found in WP when a minute peak in the free-stream spectrum was sufficient as the 
trigger. In the present paper, we shall deliberately vary forcing frequencies and 
amplitude to study wake response, and we shall show that there exists a set of oblique 
resonance modes. For each of these modes, we shall find conditions for maximum 
response, and study the general character of these resonances. The present investigation 
is conducted with a view to understanding mechanisms of significance to laminar-- 
turbulent transition as well as to far-wake ‘signatures’. 

In both the laminar and turbulent regimes, the width of a nominally two- 
dimensional far wake grows as x;, for large values of downstream distance (x), and we 
thus expect the size of the large wake structures to increase, while the passage frequency 
of these structures should decrease. Some original experiments by Taneda (1959) and 
by Matsui & Okude (1981, 1983) have shown the decay of the original Karman street 
wake and the growth in the far wake of a larger-scale secondary vortex street. Although 
there has been some discussion, based on these studies, as to whether the secondary 
street growth is due to vortex pairing or to hydrodynamic instability, it appears from 
the studies of Cimbala (1984), Cimbala, Nagib & Roshko (1988), and Williamson & 
Prasad (1993 a) that growth is due to hydrodynamic instability. 

Cimbala et al. (1988) further discovered a regular three-dimensional ‘honeycomb- 
like’ pattern in the far wake. This observation has been the subject of some debate since 
that time, which is discussed fully in WP. Although there has been a suggestion that 
the ‘ honeycomb-like’ patterns are due to a parametric subharmonic resonance of the 
kind found in shear layers and boundary layers (Lasheras & Meiburg 1990; Corke, 
Krull & Ghassemi 1992), Williamson & Prasad (1993 a, b) have shown that the patterns 
observed ‘naturally’ in wind tunnels are due to an interaction between oblique- 
shedding primary waves (shed from the body upstream) and two-dimensional 
secondary waves of larger streamwise wavelength (which are unstable and grow 
downstream). This scenario, shown schematically in figure 1 (b), is obviously distinct 
from the subharmonic interactions in figure 1 (a). In the subharmonic interactions, the 
primary waves are two-dimensional, while the secondary waves comprise pairs of 
oblique waves of opposite angle, as distinct from the single sets of primary oblique 
waves and secondary two-dimensional waves in (b). The above discussion does not 
imply that one cannot induce a subharmonic resonance with suitable three-wave 
forcing, which has indeed been successfully achieved by previous studies; it does 
suggest however that far-wake patterns observed to date without deliberate forcing are 
of the oblique wave resonance type, as shown in figure 1 (b). 

Intrinsic to the oblique resonance, as shown in WP, is the fact that the near and far 
wakes are connected in both scale and frequency. The characteristic that forges this 
‘connection’ between the near and far wakes is the sensitivity to free-stream 
disturbances (as mentioned earlier). In the presence of a very small spectral peak (fT) 
in the free stream, it is found that the far wake is receptive to a combination-frequency 
response given by f,, = cfK -f,), where f K  is the vortex-shedding frequency. This 
combination-frequency response corresponds physically with the ‘ oblique wave 
resonance’, described in WP, and shown schematically in figure 2. The discovery of 
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FIGURE 1. Schematic of nonlinear wave interactions in the far wake. (a) A general model that has been 
used to represent far-wake wave interactions involving a subharmonic instability. (b) The observed 
nonlinear wave interactions for the 'naturally' evolving wake. 

such a resonance in the far wake has been made possible by a new understanding of 
near wake three-dimensional phenomena, in particular the observation that oblique 
vortex shedding itself (where vortices are shed at some angle to the cylinder axis) is 
caused by influences from the end boundary conditions, for cylinders of even hundreds 
of diameters in length (Williamson 1988, 1989; Eisenlohr & Eckelmann 1989; Konig, 
Eisenlohr & Eckelmann 1990; Hammache & Gharib 1989, 1991). 

The oblique wave resonance studied in WP was caused by a remarkably small peak 
in the free-stream spectrum (with a turbulence intensity level of (u ims/U)  = 0.00005). 
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FIGURE 2. Schematic diagram demonstrating fundamental concept of two-wave interaction 
V;, and f,) yielding an oblique resonance wave cf, -f,). 

The discovery that this noise is caused by an acoustic disturbance has stimulated the 
present acoustic forcing experiments. Our intention is to investigate how the character 
of the free-stream spectrum influences far-wake resonances. Paradoxically, the 
secondary oblique waves will be triggered by two-dimensional forcing. With this study, 
we intend to confirm that oblique waves are prefentially amplified over two- 
dimensional waves. Indeed, we shall find that increasing the level of the two- 
dimensional forcing increases the strength of the oblique resonance waves, in 
preference to the two-dimensional secondary waves ! Particular attention will be paid 
to a frequency ratio of Cf,/f,) = 0.5. At this value, the oblique waves (&) have 
precisely the same frequency as the two-dimensional waves ( f T ) .  A major impetus for 
this study, aside from characterizing the wake response under controlled conditions, is 
to discover further nonlinear oblique wave resonances in the far wake, which 
correspond with further combination frequencies. 

A related study has been conducted by Desruelle (1983), who acoustically forced the 
far wake using a speaker, and indeed he found that often the principal response 
occurred at a combination frequency, rather than at the imposed frequency itself. A 
similar response comprising a set of combination frequencies was found by Cimbala & 
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Krein (1990), when they indirectly interfered with the spectral peaks in the free-stream 
spectrum, by manipulating vents in the test section of their wind tunnel. These studies 
did not however involve simultaneous spanwise visualization, but it seems likely that 
some form of oblique resonance would have been occurring in these studies. The above 
results, and the phenomena observed in WP, suggest most strongly that acoustic 
forcing will readily induce oblique wave resonance. 

Observations of oblique wave resonance using imposed two-dimensional wave 
forcing is shown clearly in 93. Exploration of the smoke wire location proves that these 
oblique wave observations are not simply an artifact of the smoke visualization 
technique. Measurements of wake response are presented in 94, followed by an 
investigation, in 9 5,  into higher-order modes of oblique wave resonance, corresponding 
to combination frequencies (fK - nfT). The downstream development of oblique waves 
is studied in 96, where we investigate the effects of amplitude level on the rise and fall 
of different modes downstream, for specifically chosen frequencies. Comparisons with 
predictions based on stability analysis and further discussion are contained in 9 7, 
followed by some conclusions in 98. 

2. Experimental details 
Measurements of velocity fluctuations and spectra using a hot wire, and smoke-wire 

flow visualization, were made in the same manner as conducted in WP. Throughout 
this study, the Reynolds number is 150. For the acoustic forcing experiments, we 
placed a 12 in. Sub-woofer 120 W speaker at the large contoured inlet to the wind 
tunnel, as shown in figure 3. This was driven by a 75 W audio amplifier, which was 
controlled by a function generator, from which the amplitude and frequency were 
varied. The imposed frequency df,) was monitored in the test section free stream, using 
our hot wire coupled to a digital spectrum analyser. The cylinders were constructed of 
hypodermic tubing of diameters 0.108 and 0.216 cm. It should be noted that the small 
‘muffin’ fan, which produced a very small peak in the free-stream spectrum in WP, and 
was the cause of our discovery of this phenomenon, was removed for all the present 
experiments. 

The imposed frequency cf,) is normalized with respect to the Kirmin shedding 
frequency cfK), as shown below. The amplitude of the imposed two-dimensional wave 
is defined as the normalized r.m.s. streamwise velocity fluctuation at the frequency fT 
(measured in the free stream) observed from the spectrum analyser: 

normalized frequency =fT/fK; 

normalized amplitude A = ( U : m s / v J ) f T .  

The origin of the wake coordinate system is fixed on the axis of the cylinder. The x- 
axis is downstream (defined as streamwise), the y-axis is perpendicular (defined as 
transverse) to the flow direction and to the cylinder axis, and the z-axis lies along the 
axis of the cylinder (defined as spanwise). The diameter of the cylinder is denoted D. 

3. Observations of oblique wave resonance 
One of the first experiments to be conducted using the acoustic forcing involved the 

case when the oblique resonance wave frequency CfeJ was equal to the two- 
dimensional wave frequency, i.e. &, = ( f K - f T )  = f T ,  or in terms of the normalized 
frequency, F = 0.50. This case was thought to be particularly interesting since one 
might argue from linear theory, in particular Squire’s (1933) theorem that, with no 
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FIGURE 3. Acoustic forcing experimental arrangement. 

FIGURE 4. Oblique wave resonance for F = 0.5: preferential amplification of oblique waves. This 
visualization demonstrates that, even when the secondary oblique and two-dimensional waves have 
the same frequency, the oblique waves are preferentially amplified. The smoke wire is placed at 
x / D  = 100. 

preference for one wave or the other on the basis of the frequency alone, the two- 
dimensional wave would have the largest growth rate. Certainly it is not possible to 
separate the frequencies on the spectrum analyser, so the only way to discover which 
wave is most amplified is to visualize the flow. The visualization of figure 4 shows very 
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FIGURE 6. Variation of oblique wave angle with frequency ratio F. (a) F = 0.55, A = 0.0012; 
(b) F = 0.89, A = 0.004. The smoke wire is at x / D  = 50, and the downstream end of the picture is at 
x / D  = 300. The increase in oblique wave angle (up to = 14' in b) is caused by an increase in forcing 
frequency. However, the oblique shedding waves (at the left) are similar in both cases. 

clearly that it is the oblique resonance waves that are preferentially amplified; indeed 
there is very little evidence of the imposed two-dimensional wave. One may note that in 
this picture the normalized r.m.s. amplitude of forcing is only 0.0004 so that, in 
accordance with WP, only a very small spectral peak is necessary to trigger resonance. 

A close-up photograph of the development of the oblique resonance is shown in 
figure 5,  using the 0.216 cm diameter cylinder. At the left, one may observe the oblique 
shedding waves, which are deformed by the two-dimensional waves into a wavy form. 
Segments of each of the deformed oblique shedding waves realign themselves along the 
lines of the forming oblique resonance waves until, at the right of the picture, the main 
structure has become these new large-scale oblique waves. The other segments of each 
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FIGURE 7. Visualization downstream of large-angle 64" oblique waves, for F = 0.84. The smoke 
wire is at x / D  = 100, and the right side of the picture is at x / D  = 300. A = 0.004. 

oblique shedding wave are stretched into a direction normal to the oblique resonance 
waves. This deformation and the apparent interlinking between the waves has an 
appearance similar to the preliminary computations of imposed oblique waves on a 
planar wake carried out very recently by Meiburg (1992). 

The effect of different forcing frequencies on the geometry of the oblique wave 
pattern is shown in figure 6. It may be deduced from the equations of the interacting 
waves (for example, (14) and (15) in WP) that the oblique wave angle (0,) increases as 
the normalized frequency ( F )  increases 

tan OK 
tan& = ~ 1-F' 

where OK is the oblique shedding angle. (This relationship is plotted later as part of 
figure 14.) This trend is clearly seen in the photographs of figure 6, where the oblique 
resonance wave takes the angle O1 = 43" for F = 0.55, and a remarkable 8, = 74" for 
F = 0.89, and these waves may be compared with the original oblique shedding 
vortices at the left of the pictures. Much attention has been paid in the past to 
subharmonic resonances in shear flows, and it is perhaps initially surprising that 
oblique resonance will occur for such a high frequency ratio F, which is far removed 
from the subharmonic frequency case. In figure 7, where the smoke wire has been 
placed further downstream at x / D  = 100, such large-angle waves for F = 0.84 (0, = 
64") are seen to develop as the principal waves at these downstream locations. It was 
confirmed here that oblique waves were not simply an artifact of the visualization 
technique, by placing the smoke wire at various different downstream positions, and 
also at different lateral positions (as done in WP). 

4. Measurements of wake response 
Here, the wake response is found at a particular downstream location x / D  = 150, 

which was previously found (in WP) to be a position near the saturation amplitude for 
a secondary wake. Obviously, one could choose other positions to characterize wake 

13-2 
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FIGURE 8. The responses of the different oblique resonance modes cf, -fT), v;, - 2f,), Cf, - 3f,) over 
a range of F are shown, along with the response of the two-dimensional wave mode (f,). An estimate 
of the normalized frequency for peak response of the oblique modes is F = +, i, 4, . . . respectively. In 
this plot, A = 0.002. 

response and therefore, in 96, we will investigate how the response is a function of 
downstream location for specifically chosen frequency ratios, F. In the sections that 
follow, the oblique vortex shedding angle is fixed (by controlling the spanwise end 
boundary conditions of the cylinder) such that @ = 14" or 15". 

A measure of the wake response, over a range of F and for a constant amplitude, 
A = 0.002, is given in figure 8. (Other forcing amplitudes were investigated and, although 
some differences were found, the general character is well exhibited here.) It can be seen 
that the peak response is found for the particular combination frequency (fK -fT) 
that has been discussed in detail above, at approximately the forcing frequency 
F = 0.51-0.6. However, we have plotted the response of all the principal modes which 
appear in the far-wake frequency spectra. ' Higher-order ' modes such as cf, - 2fT) and 
cf, - 3fT) appear to exhibit peak responses at lower F. For F < i, the mode cf, - 2fT) 
has a peak resonance at around F = i, while for F < $, the mode ( f K  - 3fT) has a peak 
resonance at around F = i. The two-dimensional waves themselves seem to reach a 
peak also at around F = 0.2. It should still be noted that these data only represent the 
measurements at x / D  = 150, and there is some development in the modes as one 
travels downstream. 

Following this presentation, on might question what actual far-wake frequencies are 
most amplified, irrespective of the modes (e.g. cf, - fT) ,  (fK - 2fT), . . .) they represent. 
For this purpose, these frequencies are normalized by the Karmin frequency &), and 
their response curves are plotted in figure 9. Consistent with the earlier plot, the first 
oblique mode (fK - fT )  has a broad peak response when Cf, -fT)/fK .= 0.4-0.45. The 
second mode ( fK-2 fT )  also has a broad peak response when its frequency is 
c f , -2 fT) / fK = 0.40.45, and similarly for the third mode ( fK-3 fT ) .  The data show 
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FIGURE 9. Response of higher-order oblique modes versus far-wake frequency. Experimental 
measurements show that the actual frequency of peak response for all the oblique modes is centred 
around 0.4-0.45 of the shedding frequency. The most unstable frequency adapted from analysis (of 
Cimbala et al. 1988) is 0.457 of the shedding frequency evaluated locally at x / D  = 150, Re = 150. 

that all the combination-frequency modes have a peak response when their actual 
frequency is around 0.4-0.45 of the Karman shedding frequency, but that the response 
diminishes as the order of the mode increases. 

This value for the peak response frequency is close to what may be predicted using 
the linear spatial inviscid stability analysis carried out by Cimbala et al. (1986), as 
calculated for the mean wake profile at Re = 150 and x/D = 150. The frequency for 
maximum growth rate is found using the curves of growth rate versus normalized 
frequency P = 2n6f/U, in figure 12 of Cimbala et al., which are a function of the 
normalized defect velocity Wo/U,. (In the above expression, 6 is the wake half-width 
for a Gaussian mean velocity profile, and U ,  is the free-stream velocity.) For our case, 
from figure 26 of WP, Wo/ U ,  = 0.20 and the normalized wake half-width (6 /D)  = 1.4. 
This gives, from Cimbala et al. a most-unstable frequency defined by P = 0.74, and 
with the Strouhal frequency (S,) = 0.1839, we obtain a normalized frequency for 
maximum growth rate as 

- - -__- = 0.457, 
f K  2n:s/DsK 

which is in the vicinity of the broad peak response found experimentally at 
( f / f K )  = 0.4-0.45. (It should be noted that the predicted frequency is only locally 
valid.) 

One can observe from figure 8 that the oblique mode cfK-fT)  has roughly an 
amplitude a factor of 10 greater than the two-dimensional waves ( f T ) ,  in the vicinity 
of F = 0.5, i.e. the case when the oblique and two-dimensional waves have the same 
frequency. It is not possible to find from the spectra which of these waves is most 
amplified at exactly F = 0.5, so in order to support the observations of oblique waves 
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FIGURE 10. Variation of velocity spectra with forcing frequency close to F = 0.5. The normalized 
frequency Fis reduced in steps through the F = 0.5 case, showing the preferential amplification of the 
oblique wave frequency (f,-f,) close to F = 0.5. In this case, A = 0.0012, x / D  = 150, and the 
vertical scale is 10 dBV/div. 

presented earlier in figure 4, we have decreased the imposed frequency F in  small steps 
from just above F = 0.5 to just below F = 0.5. In the spectra of figure 10, the energy 
for the oblique waves at frequency ( f K - f T )  is clearly greater than for the two- 
dimensional waves (&) when Fis just greater than 0.5. There is then a single large peak 
under the conditions when F = 0.50, and for Fjust below 0.5, again the oblique waves 
have far more energy than the two-dimensional waves. Although one cannot prove 
without visualization or two-point measurements that the oblique waves are most 
amplified when their frequency is the same as that of the two-dimensional waves, it is 
clear that their energy is much higher as one progresses the frequency through F = 0.5. 
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5. Higher-order modes of oblique wave resonance 
In this Section, we shall be concerned principally with observations and 

measurements of higher-order oblique wave resonances which have frequencies 
cf, - nf,), where n is an integer. 

In the lower spectrum of figure 10, for which F = 0.45 (i.e. F < 0.50), one can see 
that the higher oblique resonance frequency (f, - 2fT) can now be seen. For still lower 
values of F, the spectra contain more peaks for the different oblique modes, and an 
example is shown in figure 1 1 ,  for F = 0.31. In this case, Flies in the range to f, so 
one can observe frequency peaks corresponding to ( f K  - f,), dfK - 2f,) and ( f, - 3fT). 
The fact that there is energy at such combination frequencies suggests that they 
represent waves that should be observed in the same manner as the oblique waves for 
(f, - f,). We shall here extend consideration of wave interactions, discussed in WP, to 
the case of the higher-order combination frequencies, each of which interacts with the 
two-dimensional waves. If, instead of fF interacting with fT, we have (f, -(n-1) f,) 
interacting with f,, then general expressions for the geometry of the resonance waves 
may be written, following a similar approach to that used in WP. Alternatively, the 
higher-order modes may be interpreted in terms of an interaction between the 
following waves : 

a ei(kK.x--oKt) 
K , 

a ein(kT.x-wTt) 
T 2 

giving an equation for the resonance wave in the wavenumber space as 

k,, = kK - nk,. (3) 
Equations (4k(7) below may be deduced from simple geometrical inspection of the 
wavenumber diagram shown in figure 12. In the following, note that the wavelengths 
A,,, A, and A,  are the streamwise wavelengths for the resonance wave, the oblique 
shedding wave and the two-dimensional wave respectively, whereas A,, and A,, 
denote spanwise wavelengths (in the z-direction). 

Frequency of nth oblique wave, fsn 

fen = fK - nfT ; (4) 

Azn = A,,; (5) 

spanwise wavelength of nth oblique wave, A,, 

streamwise wavelength of nth oblique wave, A,, 

angle of nth oblique wave, 0, 
tan0, - A,, 
tan0, A,‘ 

-- (7) 

The equations above for the first oblique resonance mode U;i.- f,) define oblique 
waves which pass through the nodes formed by the superposition of the oblique 
shedding waves Cf,) and the two-dimensional waves (f,). This is shown diagramatically 
on the left part of figure 13, where the solid lines on the left represent the first oblique 
resonance waves passing through the nodes of the other two wave systems (shown as 
dashed lines). As the flow travels downstream to the right, so the wake instability tends 
to amplify lower frequencies. One such lower frequency, shown in this figure, is the 
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FIGURE 11. Velocity spectrum for F = 0.3 1. In this case peaks corresponding to three oblique modes 
and the two-dimensional mode may be seen. At this location, x / D  = 150, the second oblique mode 
(J,-Zf,) is taking over from the first mode (JK-f,) as the wake travels downstream, and the lower 
frequencies become amplified. A = 0.002, vertical scale is 10 dBV/div. 
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FIGURE 12. Oblique wave resonance modes in the wavenumber space. 
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FIGURE 13. Diagram of wave interactions forming first and second resonance modes, F = $. The first 
oblique resonance waves V;, -fT) (solid lines) pass through the nodes formed by the superposition 
of the oblique shedding waves and the two-dimensional waves (both dashed lines). A larger 
wavelength second oblique resonance u;, - 2f , )  occurs further downstream (to the right), and again 
these waves pass through nodes of the same superposition pattern but, in the latter case, at a larger 
angle. 

second mode ( f ,  - 2fT), which is caused by the interaction of the first oblique waves 
(f,-fT) with the two-dimensional waves (f,). As for the first mode, we can now 
interpret the lines for the mode df, - 2fT) as passing through the nodes formed by the 
superposition of the oblique waves ( f K  -f,) with the two-dimensional waves Cf,). 
Similar conclusions are drawn for the nth mode, and indeed these geometrical 
interpretations follow directly from (3). 

One can therefore envisage a sequence of resonances occurring as the wake travels 
downstream, as follows : 

interaction 
1st oblique resonance df,) ( f T )  u 

interaction 
( f T )  U 2nd oblique resonance V K - f T )  

3rd oblique resonance interaction 
V,). 

U 
cf, - 2fT) 

This sequence may occur so long as the normalized facing frequency makes the relevant 
oblique resonance frequencies non-negative, for example df, - 2fT) only occurs for 
1" < f or, more generally, the nth oblique resonance mode may only occur when the 
following simple inequality holds : 

F < l/n. (8) 
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FIGURE 14. Oblique wave angles for higher oblique modes, plotted from equation (9), versus forcing 
frequency F. The horizontal line marks the angle of peak response, 3 1" (for an oblique shedding angle 
of 15'). The intersections with the oblique-angle curves give the values of F for peak response. 

Other geometric characteristics of the flow are demonstrated simply from (4k(7). 
Clearly, the spanwise wavelengths for all the oblique wave systems must be the same, 
and all are equal to the spanwise wavelength of the oblique shedding waves. The 
oblique resonance wave angles (relative to the two-dimensional wave) are given by (7), 
or, on the assumption that the waves are locked in phase speed, 

tan 8, tan@, = - 1 -nF' (9) 

This straightforward relation is shown for the different oblique resonance modes in 
figure 14, for the case where the oblique shedding angle is a constant, 8, = 15". If we 
use the condition that in these experiments, the maximum oblique wave response is 
found when c f l f , )  = 0.45 (evaluated at the position downstream where typically the 
first mode of the secondary wake reaches a saturation amplitude), then for the nth 
oblique resonance mode, nF = 0.55. Substituting this into (9), one finds that the angle 
for maximum response is 8, = 31", and this is plotted as the horizontal dashed line in 
figure 14. For each of the oblique modes, the intersection of this dashed line with each 
of the 8, curves gives the value of F where a peak response is expected. The oblique 
shedding angle of 15" used in these calculations is perhaps typical of many of the 
cylinder wake experiments, and therefore a large response for an oblique wave angle 
near 3 1" would probably be typical in different facilities, for a Reynolds number of 
around 14&160. 

For a more approximate but useful estimate of the normalized frequencies where a 
peak response is expected, one can take the maximum response to be nF = 0.5 (this is 
a not unreasonable estimate given that the response has a broad peak), so that 

frequency for maximum wake response 
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FIGURE 15. Wave angles for maximum response, first oblique mode. I; = 0.55, 
x / D  = 100 to 300, and A = 0.0004. = 32". 

Also, from (9), an estimate of the oblique wave angle for peak response would be given 
by tan 8, = 2 tan 8,, or rather roughly 

oblique wave angle for peak response 
emaz = 28,. 

Visualization of the first oblique resonance mode cfK -fT) for the condition of peak 
response is shown in figure 15, corresponding to a normalized frequency I; = 0.55, and 
to an angle O1 = 32". In this case the smoke is introduced at x / D  = 100. Similarly, for 
the second oblique resonance mode cf, - 2&) in figure 16, maximum response is found 
for a normalized frequency of F = 0.28, and the waves in this case have an angle of 33", 
in agreement with the simple geometric considerations above. The smoke in this figure 
was also introduced at x / D  = 100, and the waves at the left of the picture are the first 
oblique resonance waves (not to be confused with the oblique shedding waves). In 
accordance with the sequential scenario suggested above, the first oblique mode 
interacts with parallel waves at the left of the picture to deliver the second oblique 
resonance waves at the right. 

In order to show that the second oblique resonance waves are not simply some 
artifact of visualization, a smaller cylinder was placed in the tunnel so that photographs 
could be taken at larger normalized distances downstream. In figure 17, for a frequency 
F = 0.287, the smoke is introduced at x / D  = 200, and we see the second oblique 
resonance waves form as the principal waves, down to x / D  = 510. 

6. Downstream development of oblique waves 
The measurements to this point give an overall characterization of the wake 

response. The response is evaluated at a location downstream where, approximately, 
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FIGURE 16. Wave angles for maximum response, second oblique mode. F = 0.28, 
x / D  = 100 to 300, and A = 0.002. 8, = 33”. 

FIGURE 17. Observations of second oblique mode far downstream (for small cylinder). 
F = 0.287, A = 0.002. 

the first of the secondary modes will have reached a saturation amplitude. However, 
different amplified oblique or parallel modes may appear in different ranges of 
downstream distance. 

In WP, it was shown that when F > 0.5, then there exists an ‘Oblique’ mode, for 
which the wake exhibited an oblique resonance c f K - f T )  at all downstream locations 
studied. In this case, we found that the two-dimensional mode (f,) has a frequency that 
is above the first oblique mode ( f K - f T ) ,  and thereby does not become amplified 
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FIGURE 18. Regions of oblique shedding waves and first oblique mode in the (x,A)-plane, F = 0.55. 
The data are taken at the downstream position at which the decaying energy at the oblique shedding 
frequency cf,) is equal to the growing energy at the frequency of the first oblique mode cf,-f,). 

further downstream, because the wake responds more to lower frequencies. When 
F < 0.5, we observed an ‘ Oblique-Two-dimensional’ mode, whereby the oblique mode 
( f K  - f T )  is amplified first, followed further downstream by the two-dimensional mode 
(whose frequency is lower and more amplified downstream than the oblique mode). 

It appears from the present work that there are indeed other possibilities, which are 
a function of the frequency and amplitude of the two-dimensional wave forcing. There 
is the possibility for second and third oblique wave resonances to occur, depending on 
the value of F. In WP, we studied the case (for Re = 150) where F was slightly less than 
0.5, demonstrating the Oblique-Two-dimensional mode. In this paper, we shall 
specifically investigate two main cases, also for Re = 150, which are F just greater than 
0.5 (F  = 0.55), and Flow enough so that ( fK-2 fT)  exists in the flow ( F  = 0.36). 

In the case F = 0.55, over the range of amplitudes A plotted in figure 18, we find that 
the oblique shedding waves give way to the first oblique mode c f , - f T )  at a certain 
distance downstream, which varies with the amplitude. This distance in figure 18 is 
defined at the point where the decaying energy of the oblique shedding waves is equal 
to the growing energy of the secondary mode (defined as the start of the ‘far wake’ in 
figure 16 of WP). As A is increased, the interactions leading to oblique resonance occur 
further upstream, and correspondingly the energy in the interactions is stronger, since 
both the oblique shedding waves and the two-dimensional forcing waves are at a higher 
amplitude. The surprising conclusion is that the higher the two-dimensional wave 
forcing is, the larger is the oblique resonance wave response! 

The downstream development of velocity fluctuations for F = 0.55 is shown in figure 
19. For the imposed forcing amplitude of A = 0.002, the oblique resonance waves at 
( f K - f T )  become the predominant spectral peak at around x / D  = 63. Thereafter, the 
oblique waves dominate the far wake, in preference to the two-dimensional waves Cf,). 

The case F = 0.36 is certainly more complex, involving as it does the far-wake 
frequencies cfK - fT) ,  (fT), and ( fK - 2fT), in descending order of magnitude (their 
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FIGURE 19. Downstream development of velocity fluctuations, F = 0.55 : the oblique resonance waves 
are preferentially amplified over the two-dimensional waves at all downstream locations (since the 
oblique wave frequency is lower than the two-dimensional wave frequency). A = 0.002. 

FIGURE 20. Regions of oblique and two-dimensional modes in the (x, A)-plane, F = 0.36. These 
regions, showing the most prominent modes in the (x, A)-plane, are bounded by lines for which the 
modes to each side have the same energy in the spectra at that particular x / D  location. 
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FIGURE 21. Downstream ‘low-amplitude’ sequence of modes, A = 0.0001, F = 0.36. The flow 
visualization corresponds with the fluctuation measurements shown underneath, over the range of 
x / D  = 50 to 300. 

frequencies, normalized byf,, are respectively 0.64,0.36,0.28).  Based on the idea that 
the far wake will amplify each of these frequencies in turn (in descending order as the 
wake becomes wider with downstream distance) one might expect the following 
sequence of most-amplified modes : 

low-amplitude sequence 
f K  c f , - f T >  dfT> ( f K - 2 f T > .  

This is indeed the order in which the most-amplified modes appear in the far wake for 
low amplitudes of forcing, A < 0.001, as shown in figure 20. However, for A > 0.001, 
it seems that the wave interactions are more vigorous. The first oblique mode (f, - f T )  
occurs further upstream (like the F = 0.55 case), and the second oblique resonance 
mode also occurs further upstream, such that the flow bypasses altogether the regime 
where the two-dimensional waves are most amplified, as follows : 
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FIGURE 22. Downstream ' high-amplitude' sequence of modes, A = 0.0012, F = 0.36. As figure 21 but 
the larger forcing amplitude of the two-dimensional waves paradoxically inhibits the two-dimensional 
wave response, and preferentially amplifies the second oblique mode. 

high-amplitude sequence f, + UK - fT) + + + UK - 2fT). 

Development of the spectral amplitudes with downstream distance are shown in 
figures 21 and 22. In figure 21, for A = 0.0001, it may be seen that we follow the low- 
amplitude sequence above, and the corresponding flow visualization demonstrates the 
presence of the oblique shedding waves, and the oblique resonance waves, followed by 
the two-dimensional waves over a certain range of downstream distances. On the other 
hand, for A = 0.0012 (a ten-fold increase), we find that the most-amplified modes 
follow the high-amplitude sequence, as shown in figure 22. The corresponding flow 
visualization shows a small portion of oblique shedding waves upstream (at the left), 
followed by a region of the first oblique mode ( f K  - f T ) ,  followed by a region (from 
x / D  = 175 onwards) where the second oblique resonance waves (fK - 2fT) are 
prominent. It should be noted that the flow visualizations in figures 21 and 22 involve 
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FIGURE 23. Variation of wake response amplitude ( u : , , / U ) ~ ~  with forcing amplitude, A .  The 

wake response follows closely the relationship (solid line) ( u : , , / U ) ~ ~  = 0.200 Af. 
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FIGURE 24. Measured and predicted far-wake frequencies versus x / D ,  F = 0.55. 

exactly the same experimental arrangement, except for the level of two-dimensional 
wave forcing amplitude. Again, it is perhaps surprising that, for an increase in two- 
dimensional wave forcing amplitude, it is the oblique resonance modes that become 
stronger, indeed to the level where they inhibit the two-dimensional parallel waves 
from ever being predominant in the wake! 

A characteristic wake response amplitude may be taken as the value of (uimS/ U)Fw 
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FIGURE 25. Growth rate curves for various oblique modes, versus forcing frequency F. These data for 
the spatial growth rate show the regions of normalized frequency over which one might expect each 
oblique resonance mode to be prominent. The vertical scale is arbitrary, and is simply to demonstrate 
the shape of the predicted growth rates. 

1U 

evaluated at the point where the decaying energy of the oblique shedding waves equals 
the growing energy of the secondary mode, which is here defined as the start of the 'far 
wake'. For the case when F = 0.55, this wake amplitude response has been plotted as 
a function of the forcing amplitude A ,  in figure 23, and this shows the expected rise in 
response amplitude as A increases. However, it is interesting to noteL the reasonable 
agreement of the data with the relationship ( u ~ , , / U ) ~ ~  = const. x Ax. In the limited 
cases computed, it was also found that the saturation amplitudes of the first oblique 
mode varied as A:. 

7. Discussion 
Despite the fact that the oblique wave resonance is a nonlinear phenomenon, we can 

make useful comparisons between the observed phenomena and the predictions from 
stability analysis, following the spatial inviscid linear stability analysis of Cimbala 
(1984) and Cimbala et al. (1988), as used in WP. In this forcing study, we shall 
investigate only the maximum-response case F = 0.55, for which the most amplified 
frequency measured in the wake (as it travels downstream) is compared to the 
predictions from stability analysis in figure 24. It can be seen that for this amplitude 
( A  = 0.002), the oblique shedding frequency gives way to the oblique resonance wave 
frequency cfK-fT)  at around x / D  = 70. This corresponds, approximately, to a drop 
in prominent frequency to a value predicted to have the maximum growth rate from 
the local theory, as noted in WP and Cimbala et al. (1988). However, in this case it 
appears that there are no other prominent frequencies which will take over as the most 
amplified frequency. The first oblique waves will grow and decay, and will dominate 
at all distances downstream, unless other forcing frequencies come into play. 

A plot of growth rates for the different resonance modes can be derived from the 
analysis of Cimbala et al. in figure 25, where spatial growth rate on a logarithmic scale 
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is plotted versus predicted normalized forcing frequency F. The data have been 
calculated using values of wake defect velocity and wake width corresponding to a 
location at x / D  = 150, and for Re = 150. Broad regions of wake response are found 
for each of the resonance modes. The ranges of F for which each of the modes is 
prominent appear to be approximately similar to the experimental measurements in 
figure 8. 

It was shown in WP that Matsui & Okude’s (1981) experiments involved a 
combination frequency resonance cf, - f,) which was caused, for their particular wind 
tunnel, by a free-stream spectral peak at frequency ( f , D 2 / v )  = 13.8. This free-stream 
frequency ‘ controlled’ the predominant far-wake frequency over a range of 
Re = 100-160. Combination frequency response of the wake to specific free-stream 
conditions has also been observed by Cimbala & Krein (1990), who influenced the free- 
stream spectrum by opening and closing vents downstream of the test section, for 
Re = 140. In their case, there was more than one prominent peak in the free-stream 
spectrum, which induced a rather complex multi-peaked wake response, although 
particular combination frequencies could clearly be seen. A further study by Desruelle 
(1983) showed that, by acoustic forcing, a combination frequency response cfK - f,) 
occurred in the far wake ( x / D  = 200), over a large range of F = 0.32-0.84. The above 
studies show that a resonance at combination frequencies involving free-stream noise 
is a common feature of wind tunnel facilities. In fact, in all of the above studies the 
combination-frequency response can far exceed the free-stream noise frequency 
response itself, in agreement with the present work. 

8. Conclusions 
This work follows from an earlier study in which we observed the exquisite 

sensitivity of the ‘natural’ far wake to the disturbances present in the free stream 
(Williamson & Prasad 1993 a). Indeed, it was found that it is, surprisingly, the noise in 
the free stream which forms the ‘connection’ between near and far wakes, enabling the 
far wake to exhibit a ‘signature’ of the near-wake vortex structure, and causing the 
regular three-dimensional wave patterns that may be observed. Our central question, 
in this paper, is not so much whether the near and far wakes are ‘connected’ by both 
their frequencies and scale; it is to what extent the character of the free-stream noise 
may enhance or camouflage the far-wake ‘signature’ of the near wake. 

In the present paper, we have induced nonlinear oblique wave resonance in the far 
wake by the use of (paradoxically) two-dimensional wave acoustic forcing of the free 
stream. A set of oblique resonance modes has been found, which corresponds to 
frequencies (fK - nf,), where n is an integer. These oblique resonances are distinctly 
different from the subharmonic resonance models that have hitherto been used to 
represent the far wake. 

Flow visualization shows that the far wake responds to the interaction of the two- 
dimensional forcing with the oblique shedding waves by exhibiting oblique resonance 
waves (f, - nf,) over a surprisingly wide range of normalized forcing frequencies, 
F = (f,/f,). Even under conditions where the oblique and two-dimensional secondary 
waves have the same frequency, and when linear analysis might suggest two- 
dimensional waves to be prominent, the visualization clearly demonstrates the 
preferential amplification of the oblique resonance waves. 

The response of the wake, to a large range of forcing frequencies, shows a broad 
region of peak response, centred around F = 0.40.45, for the first oblique resonance 
mode (fK -f,). The measurements also show that a second resonance ( f ,  - 2f,) and 
a third resonance (f, - 3fT) exhibit peak responses at lower values of F. However, the 
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actual frequency most amplified in the far wake, for all these higher-order oblique 
modes, is broadly between 0.4-0.5 of the oblique shedding frequency, which is close to 
the frequency for maximum growth rate (0.457) that may be predicted from linear 
stability analysis. The variations of theoretical growth rates for the different oblique 
resonances (f, - nfT), over a range of F, have a distinctly similar appearance to the 
measured wake responses for these oblique modes. 

Equations for the geometry of the resonance waves are simply derived, one of which 
shows that the spanwise wavelengths of all the oblique wave systems are the same, and 
are exactly equal to the spanwise wavelength of the oblique shedding waves. Use of 
these equations yields conditions under which peak response of the far wake may be 
predicted, if we make the approximation that peak response occurs for F = 0.5. The 
frequencies for peak response correspond to 

which is approximately what is found from the response curves. An estimate for the 
oblique wave angles for maximum wake response is given by 

where 8, is the oblique shedding angle. For typical oblique shedding angles of around 
15" in different facilities, one may thus expect to observe prominent resonance wave 
angles of around 30". In the present work, for large values of F, resonance for oblique 
waves of remarkably large angle (relative to the two-dimensional waves) up to 8, = 74" 
has been observed. 

An increase of forcing amplitude has the effect of bringing the nonlinear interactions, 
which lead to oblique wave resonance, further upstream. Surprisingly, as one increases 
the amplitude of the two-dimensional wave forcing, the net effect of the nonlinear 
interactions is to further amplify the oblique resonance waves, in preference to the two- 
dimensional waves. In the case of low F, differences in forcing amplitude can lead to 
a change in the sequence of oblique or two-dimensional wave modes that become 
prominent as the wake travels downstream. With a variation in forcing amplitude (A), 
the amplitude of oblique wave response is found to be closely proportional to A;. 

This study of acoustic forcing of the far wake confirms that the signature of the near 
wake left in the far wake is dependent on the noise in the free stream. This particular 
work has shown the response of the far wake to single-frequency acoustic forcing, and 
we are presently investigating other forms of disturbance to the free stream. A 
fundamental question that guides our study is to what extent the character of the free- 
stream spectrum enhances or camouflages the signature of the near wake that is carried 
downstream. 

At present, an analytical and computational effort is underway to describe the above 
wave interactions, and to resolve some of the outstanding questions. As one part of this 
effort, we are collaborating with Dr Alain Pumir at the Institut Nonlineaire, Universite 
de Nice, concerning analysis of stability and a description of the wave interactions in 
terms of coupled amplitude equations. 
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